
 

C-A/AP/#89 
November 2002 

 
 
 
 
 
 

Luminosity As Calculated From Machine  
Parameters 

 
 

W. MacKay  
  

 
 
 
 
 
 
 
 
 
 

Collider-Accelerator Department 
Brookhaven National Laboratory 

Upton, NY  11973 
 



14 Dec., 1999

LUMINOSITY AS CALCULATED FROM MACHINE
PARAMETERS

W. W. MACKAY

1. Introduction

The luminosity rate of interactions, at time t, between two colliding beams may be
easily understood by treating one beam as a target, with number density ρ2( �X2, t),

and the other as an incident beam, whose flux density is vρ1( �X1, t), where

v = |�v1 − �v2| (1)

is the relative velocity.1 The coordinates X2 and X1 are points in the six dimensional
phase space (x, x′, y, y′, s, δ). The interaction rate may then be written as

dN

dt
=

∫
σ( �X2, �X1) ρ2( �X2, t) |�v1 − �v2| ρ1( �X1, t) d6X2 d6X1, (2)

where σ is the cross section for single particle interactions.
Of course, for the actual rate seen by an experiment one must fold in the detector

acceptance and efficiency for a desired reaction by integrating the differential cross
section times acceptance and efficiency over the the phase space of final particles.

For most high energy collisions the probability of interaction is extremely small,
unless the particles are very close, e. g.,

|�x1 − �x2| � 10−15m. (3)

This is much less than the size of a typical beam (� 10−6m). It is therefore reasonable
to approximate the cross section by

σ( �X2, �X1) � σ(�p2, �p1) δ3(�x1 − �x2). (4)

If the beams are almost monoenergetic, σ may be factored outside the integral and
replaced by the total cross section, so that

dN

dt
� |�v1 − �v2| σ(�p2, �p1)

∫
ρ2(�x, t) ρ1(�x, t) d3x. (5)

If the bunch shape does not change appreciably while the opposing bunches overlap,
then the time dependence of the ith densities may be written as

ρi(�x, t) = ρi(�x − �vit), (6)

1For relativistic colliding beams this relative velocity is the difference of the two velocities v �
|c− (−c)| = 2c as calculated in the between the two beams. Perhaps the best way to think of this is
that an observer in the rest system of the collision point sees the bunches pass through each other
at twice the effective speed as a single bunch.
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and the total number of interactions from one bunch crossing is

N = |�v1 − �v2| σ
∫

ρ2(�x − �v2t) ρ1(�x − �v1t) d3x dt. (7)

When there are Nb equally spaced bunches per beam in a circular collider whose
revolution frequency is f0, the interaction rate per interaction region is

dN

dt
= |�v1 − �v2| f0Nbσ

∫
ρ2(�x − �v2t) ρ1(�x − �v1t) d3x dt. (8)

The ratio of interaction rate to total cross section is called the instantaneous lumi-
nosity

L = |�v1 − �v2| f0Nb

∫
ρ2(�x − �v2t) ρ1(�x − �v1t) d3x dt, (9)

which for high energy collisions in the center of mass system becomes

L = 2cf0Nb

∫
ρ2(x, y, z − ct) ρ1(x, y, z + ct) d3x dt, (10)

where beam-2 moves in the +z direction. The total or integrated luminosity refers
to the instantaneous luminosity integrated over the time of the experiment.

If the bunch densities change shape in the overlap region, then the simplification
of Eq. 6 is invalid and the luminosity must be calculated from

L = 2cf0Nb

∫
ρ2(x, y, z, t) ρ1(x, y, z, t) d3x dt. (11)

If the beams cross where the transverse beta-functions both have minima, then the
minima of the beta-functions should not be smaller than the bunch length, other-
wise too much of the overlap region has a lower density, and the peak luminosity is
degraded. The beta-function about an interaction point goes like

β(s) = β� +
s2

β∗ , (12)

with the minimum value of β∗ at the interaction point (s = 0). For bunches of length
lb, the overlap occurs between s = ±lb/2. If lb = β� the longitudinal centers of the
bunches cross at s = 0 where β = β� and the opposite ends of the bunches cross
where β = 1.25β�.

2. Gaussian beam distributions

For one transverse horizontal degree of freedom the Courant-Snyder invariant is

Wx =
(
xβ x′

β

)(
γx αx

αx βx

) (
xβ

x′
β

)
(13)

= γx2
β + 2αxβx′

β + βx′2
β, (14)

where βx, αx, and γx = (1 + α2
x)/βx are the Twiss parameters for betatron motion,

and xβ and x′
β are the transverse betatron coordinate and angle in a paraxial phase
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space. A Gaussian distribution of particles undergoing betatron oscillations for this
degree of freedom may be written as

fβ(xβ , x′
β) =

Nz

2πε
e−

1
2
Wx/εx , (15)

where N is the number of particles and πεx is the rms horizontal emittance.
Similarly for the longitudinal motion we may write an invariant

Wz =
(
z δ

)(
γz αz

αz βz

) (
z
δ

)
(16)

= γzz
2 + 2αzzδ + βzδ

2, (17)

The corresponding longitudinal distribution function for a Gaussian bunch is

fz(z, δ) =
N

2πεz
e−

1
2
Wz/εz , (18)

where z = s − vt and δ = ∆p/p are respectively the longitudinal and fractional mo-
mentum deviations of a particle from the design particle when it passes the coordinate
s.

The total transverse coordinates are the sum of the betatron coordinates and the
effect of dispersion:

X =

(
x
x′

)
=

(
xβ

x′
β

)
+

(
0 ηx

0 η′
x

) (
z
δ

)
, (19)

where ηx and η′
x are the horizontal closed-orbit dispersion functions. Since the Ja-

cobian of the transformation from coordinates (xβ, x′
β , z, δ) to (x, x′, z, δ) is one, we

may write a combined distribution function as

f(x, x′, z, δ) =
N

(2π)2εxεz

e−
1
2
[(X−DZ)TΞβ(X−DZ)+ZTΞzZ], (20)

with the definitions:

X =

(
x
x′

)
, Z =

(
z
δ

)
, D =

(
0 ηx

0 η′
x

)
, (21)

Ξβ =
1

εx

(
γx αx

αx βx

)
, and Ξz =

1

εz

(
γz αz

αz βz

)
. (22)

Rearranging terms in the distribution and adding in a similar distribution function
for uncoupled vertical betatron motion yields the equation

f(x, x′, y, y′, z, δ) =
N

(2π)3εxεyεz
e−

1
2
X̂TΞX̂, (23)
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where

X̂ =




x
x′

y
y′

z
δ


 , and (24)

Ξ =




γx

εx

αx

εx
0 0 0 −γxηx+αxη′

x

εx
αx

εx

βx

εx
0 0 0 −αxηx+βxη′

x

εx

0 0 γy

εy

αy

εy
0 0

0 0 αy

εy

βy

εy
0 0

0 0 0 0 γz

εz

αz

εz

−γxηx+αxη′
x

εx
−αxηx+βxη′

x

εx
0 0 αz

εz

βz

εz
+ H

εx




, (25)

with the function H = γxη
2
x + 2αxηxη

′
x + βxη

′2
x. The function H is sometimes called

the dispersion invariant since it is constant through regions of the lattice with no
bends (i. e., straight sections). With a bit of algebra one can show that

det(Ξ) =
1

ε2
xε

2
yε

2
z

. (26)

The beam sigma matrix (Σ) or variance matrix for the distribution is just the inverse
of Ξ:

Σ =




βxεx + η2
xσ

2
δ −αxεx + ηxη

′
xσ

2
δ 0 0 −ηxαzεz ηxσ

2
δ

−αxεx + ηxη
′
xσ

2
δ γxεx + η′2

xσ
2
δ 0 0 −η′

xαzεz η′
xσ

2
δ

0 0 βyεy −αyεy 0 0
0 0 −αyεy γyεy 0 0

−ηxαzεz −η′
xαzεz 0 0 βzεz −αzεz

ηxσ
2
δ η′

xσ
2
δ 0 0 −αzεz σ2

δ




,

(27)

where σ2
δ = γzεz. Moreover if we consider coupling in all three dimensions, the beam

sigma matrix may be written as the usual symmetric variance matrix for a Gaussian
distribution:

Σ =




σ2
x σxx′ σxy σxy′ σxz σxδ

σxx′ σ2
x′ σx′y σx′y′ σx′z σx′δ

σxy σx′y σ2
y σyy′ σyz σyδ

σxy′ σx′y′ σyy′ σ2
y′ σy′z σy′δ

σxz σx′z σyz σy′z σ2
z σzδ

σxδ σx′δ σyδ σy′δ σzδ σ2
δ




, (28)

which has 21 free parameters. The general Gaussian distribution is then given by

f(x, x′, y, y′, z, δ) =
N

√|Ξ|
(2π)3

e−
1
2
X̂TΞX̂, (29)
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where Ξ = Σ−1.
The distribution given by Eq. 29 has a simple hyperelliptical shape. For a long

beam passing through minimum of the beta-function, it should have a dog-bone
shape. So far we have described the particle distribution relative to a longitudinal
position s, where the z coordinate is a time-like coordinate specifying how far the
particle in question is in advance of the design particle. In order to evaluate the
overlap integral of two colliding beams, we need to specify the density function in
terms of (x, x′, y, y′, s, δ; t), rather than (x, x′, y, y′, z, δ; s). For a particle of velocity
v, the relation between s, z, and t is z = vt − s, and the required transformation
between coordinates is defined by

X̂(x, x′, y, y′, z, δ; t) = M−1 X(x, x′, y, y′, s, δ; t), (30)

i. e.,




x
x′

y
y′

z
δ


 =




1 −s 0 0 0 0
0 1 0 0 0 0
0 0 1 −s 0 0
0 0 0 1 0 0

0 0 0 0 1 −βs
γ2

0 0 0 0 0 1







x
x′

y
y′

vt − s
δ


 =




x − x′s
x′

y − y′s
y′

vt −
(
1 + βδ

γ2

)
s

δ




(31)

where β = v/c and γ =
√

1 − β2 are the usual Lorentz parameters. Substituting
Eq. 31 into Eq. 29 gives

f(x, x′, y, y′, s, δ; t) =
N

√|Ξ|
(2π)3

e−
1
2
XT(M−1)TΞM−1X, (32)

which will now have the correct dog-bone shape at the waist. For high energy bunched
beams the βδ

γ2 � 1 and may be ignored. (For RHIC βδ
γ2 � 10−7.) Integrating Eq. 32

over the momentum-like coordinates yields the particle density per volume as a func-
tion of spatial coordinate and time:

ρ(x, y, s; t) =
N

√|Ξ|
(2π)3

∫∫∫
e−

1
2
XT(M−1)TΞM−1X dx′ dy′ dδ. (33)

Let us now consider the limited case of a crossing point located in a straight section
with no dispersion or horizontal-vertical coupling; here Ξ of Eq. 25 becomes block-
diagonal:

Ξ =




γx

εx

αx

εx
0 0 0 0

αx

εx

βx

εx
0 0 0 0

0 0 γy

εy

αy

εy
0 0

0 0 αy

εy

βy

εy
0 0

0 0 0 0 γz

εz

αz

εz

0 0 0 0 αz

εz

βz

εz




. (34)
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Beam 1 h θ
s

∆
IP

Beam 2

Figure 1. Geometry of errors at the beam’s crossing point.

With this form, the integration of Eq. 33 is fairly simple and gives:

ρ(x, y, s; t) =
Ne

− x2

2εx(β∗
x−2α∗

xs+γ∗xs2) e
− y2

2εy(β∗
y−2α∗

ys+γ∗y s2) e
− (vt−s)2

2εzβ∗
z√

(2π)3(β∗
x − 2α∗

xs + γ∗
xs

2)(β∗
y − 2α∗

ys + γ∗
ys

2)β∗
z εxεyεz

, (35)

where the superscript “∗”’s refer to the value at the design crossing point where
s = 0. It is worthwhile noting that the expressions of transverse Twiss parameters in
parentheses are just the evolution of the transverse β-functions along s:

βx(s) = β∗
x − 2α∗

xs + γ∗
xs

2, and βy(s) = β∗
y − 2α∗

ys + γ∗
ys

2. (36)

For two colliding bunches the densities may be written as

ρ1(x, y, s; t) =
N1e

− x2

2εx1βx1(s) e
− y2

2εy1βy1(s) e
− (s−vt)2

2εz1β∗
z1√

(2π)3εx1εy1εz1βx1(s)βy1(s)β
∗
z1

, (37)

with the s-axis taken along the trajectory of beam-1 and

ρ2(x, y, s; t) =
N2e

− (x−hx−θxs)2

2εx2βx2(s) e
− (y−hy−θys)2

2εy2βy2(s) e
− (s+vt+∆)2

2εz2β∗
z2√

(2π)3εx2εy2εz2βx2(s)βy2(s)β
∗
z2

, (38)

the trajectory of beam-2 being offset at s = 0 by hx in the x-direction and hy in
the y-direction. (See Fig. 1.) Using a small angle approximation, the slopes of the
second beam’s trajectory in the x and y directions are respectively θx and θy relative
to the first beam’s trajectory. The parameter ∆ accounts for a mistiming of the bunch
crossing; the bunches then cross at s = ∆/2 from the design interaction point. The
luminosity of this bunch crossing may be found by integrating the overlap of the two
densities:

L = 2v

∫∫∫∫
ρ1(x, y, s; t)ρ2(x, y, s; t) dx dy ds dt. (39)
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Integrating the x-dependent exponentials over x yields

∫ ∞

−∞
e
− (x−hx−θxs)2

2εx1βx1(s) e
− x2

2εx2βx2(s) dx =

√
2πεx1εx2βx1(s)βx2(s)

εx1βx1(s) + εx2βx2(s)
e
− (hx+θxs)2

2[εx1βx1(s)+εx2βx2(s)] .

(40)

A similar integral occurs for the y-dimension. The integral of the t-dependent expo-
nentials is∫ ∞

−∞
e
− (s−vt)2

2εz1β∗
z1 e

− (s+vt+∆)2

2εz2β∗
z2 v dt =

√
2πεz1εz2β∗

z1β
∗
z2

εz1β∗
z1 + εz2β∗

z2

e
− (2s+∆)2

2(εz1β∗
z1

+εz2β∗
z2

) . (41)

Using these results Eq. 39 becomes

L =

∫ ∞

−∞

2N1N2 e
− (hx+θxs)2

2[εx1βx1(s)+εx2βx2(s)] e
− (hy+θys)2

2[εy1βy1(s)+εy2βy2(s)] e
− (2s+∆)2

2(εz1β∗
z1

+εz2β∗
z2

)√
(2π)3[εx1βx1(s) + εx2βx2(s)][εy1βy1(s) + εy2βy2(s)][εz1β

∗
z1 + εz2β

∗
z2]

ds,

(42)

for a single crossing of two bunches.
For the special case where the colliding beams are collinear with identical beam

sizes and shapes at the interaction point, and having 2σz � β∗
x, 2σz � β∗

y , and ∆ = 0,
the previous integral simplifies to

L =
N1N2

4πσxσy
. (43)

The average instantaneous luminosity for Nb crossing bunches per revolution with N1

and N2 particles per bunch respectively for the opposing beams is then

L =
f0NbN1N2

4πσxσy
. (44)

When the beams are round with εrms = εrms
x = εrms

y and β∗ = β∗
x = β∗

y and of equal
current, then

L =
f0NbN

2γ

4πβ∗εrms
. (45)

In a more realistic situation the different bunches may have random intensities, so
that the product NbN1N2 must be replaced by a sum of the products of the colliding
bunches’ intensities, i. e.,

NbN1N2 → ΣNb
j=1N1jN2j . (46)

3. Estimation of luminosities in RHIC

Table I lists the RHIC design parameters for both protons and gold ions. The
results of several simulated scans are shown in Figures 2 to 9 for both protons and
gold ions.
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Table I: RHIC parameters

Parameter Protons Gold Ions
βxmin 1.0m 1.0m
βymin 1.0m 1.0m
εN
x95% 20µm 10µm

εN
y95% 20µm 10µm

σz 0.075m 0.2m
N1 1 × 1011 1 × 109

N2 1 × 1011 1 × 109

Nb 55 55
frev 78.25kHz 78.25kHz
γ 260 108
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Figure 2. Luminosity versus bunch
length for proton beams at various β∗

values.
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Figure 3. Longitudinal scan of lumi-
nosity for protons with β∗ = 1m.

Fig. 2 shows the variation of the luminosity with bunch length for β∗ values from
1 to 10 m. Here I have assumed that the beams are round and of the same size

β∗
x1 = β∗

y1 = β∗
x2 = β∗

y2 and ε∗x1 = ε∗y1 = ε∗x2 = ε∗y2. (47)

This demonstrates the usual rule of thumb that the bunch length should be no larger
than the value of β∗

Fig. 5 shows the effect of misalignment of the waist of the the beam. Here I have
assumed that the horizontal and vertical waists of both beams are displaced by the
same amount but in opposite directions for both rings. This shows that to peak up
luminosity, we should measure the optics carefully around the interaction regions. A
scan of luminosity versus each waist should be made at some time to ensure that the
optics are placing all four waists within about 10 cm of the interaction point.

The pair of beam position monitors (BPM) in each interaction region are separated
by about 16.6 m. The beam pipe aperture through the DX and D0 magnets limit the
maximum crossing angle to about 1 mr. The alignment of the beams from the BPM’s
should be better than 200µm, so that we should be able to dead reckon the crossing
angle very well, θx,y ≤ 6µr. Figs. 6 and 7 show that there is very little degradation of
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luminosity for crossing angles up to several hundred microradians. Clearly the longer
bunches of the gold beams are a bit more sensitive to crossing angle.

The rf system can easily phase the beams to cross at the required location within
a couple of centimeters. Figs. 3 and 9 show that a ∆/2 = 20cm longitudinal shift of
the IP has a marginal effect for both gold and proton beams

Since the BPM system should align the crossing point to a few hundred microns,
we should be able to set the beam to collide with at least 30% of the peak luminosity.
Even if we miss the crossing point by 0.5 mm, we can perform a two dimensional scan
in 100µm steps to get quite close to the peak. Then a finer transverse scan can be
performed to reach the peak.
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Figure 4. Scan of hx for proton beams
at 250 GeV with β∗ = 1m. (The dot
spacing is 20µm.)
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Figure 8. Scan of hx for Gold ion
beams at 100 GeV/amu with β∗ = 1m
and 55 bunches of 109 ions per bunch.
(The dot spacing is 20µm.)
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Figure 10. Scan of hx for Gold ion
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Figure 11. Longitudinal scan for Gold
ion beams at 100 GeV/amu with β∗ =
1, 2, 3, 5, and 10 m and 6 bunches of
109 ions per bunch.
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